Abstract
The analysis of sports movements is of great importance for optimizing sports performance, minimizing injury risks, and ensuring that athletes work with correct techniques. Powerlifting is a power sport consisting of fundamental movements such as bench press, deadlift, and squat. These movements are inherently complex and challenging to execute. Therefore, it is of great importance to perform these movements with the correct technique and safely. The aim of this study was to classify these movements using deep learning methods to ensure that the basic movements in powerlifting sports (bench press, deadlift, and squat) are applied with correct techniques and to minimize the risk of injury. In this study, feature extraction was performed on powerlifting movements using the deep learning-based SqueezeNet model, followed by classification using machine learning methods. The dataset was compiled from 876 images of bench press, deadlift, and squat movements sourced from various online platforms. Additionally, the dataset was expanded through data augmentation techniques, and key points of posture estimation were added to the images using the Mediapipe library. The obtained datasets were classified using Neural Network, Logistic Regression, Support Vector Machine and Random Forest algorithms and model performances were evaluated using various metrics. The findings revealed that the Neural Network model demonstrated superior performance, achieving the highest accuracy (0.989). Additionally, the integration of pose estimation and data augmentation techniques significantly enhanced classification accuracy and overall model performance. The findings of this study show that deep learning methods are powerful tools in sports movement analysis and can make significant contributions to the evaluation of athletes' performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Applied Methods in Electronics and Computers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.