Abstract
We present a new class of wavefront sensors by extending their design space based on machine learning. This approach simplifies both the optical hardware and image processing in wavefront sensing. We experimentally demonstrated a variety of image-based wavefront sensing architectures that can directly estimate Zernike coefficients of aberrated wavefronts from a single intensity image by using a convolutional neural network. We also demonstrated that the proposed deep learning wavefront sensor can be trained to estimate wavefront aberrations stimulated by a point source and even extended sources.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.