Abstract

This paper investigates the use of deep learning techniques for real-time optimal spacecraft guidance during terminal rendezvous maneuvers, in presence of both operational constraints and stochastic effects, such as an inaccurate knowledge of the initial spacecraft state and the presence of random in-flight disturbances. The performance of two well-studied deep learning methods, behavioral cloning (BC) and reinforcement learning (RL), is investigated on a linear multi-impulsive rendezvous mission. To this aim, a multilayer perceptron network, with custom architecture, is designed to map any observation of the actual spacecraft relative position and velocity to the propellant-optimal control action, which corresponds to a bounded-magnitude impulsive velocity variation. In the BC approach, the deep neural network is trained by supervised learning on a set of optimal trajectories, generated by routinely solving the deterministic optimal control problem via convex optimization, starting from scattered initial conditions. Conversely, in the RL approach, a state-of-the-art actor–critic algorithm, proximal policy optimization, is used for training the network through repeated interactions with the stochastic environment. Eventually, the robustness and propellant efficiency of the obtained closed-loop control policies are assessed and compared by means of a Monte Carlo analysis, carried out by considering different test cases with increasing levels of perturbations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.