Abstract

Imaging fluorescence correlation spectroscopy (FCS) is a powerful tool to extract information on molecular mobilities, actions, and interactions in live cells, tissues, and organisms. Nevertheless, several limitations restrict its applicability. First, FCS is data hungry, requiring 50,000 frames at 1-ms time resolution to obtain accurate parameter estimates. Second, the data size makes evaluation slow. Third, as FCS evaluation is model dependent, data evaluation is significantly slowed unless analytic models are available. Here, we introduce two convolutional neural networks—FCSNet and ImFCSNet—for correlation and intensity trace analysis, respectively. FCSNet robustly predicts parameters in 2D and 3D live samples. ImFCSNet reduces the amount of data required for accurate parameter retrieval by at least one order of magnitude and makes correct estimates even in moderately defocused samples. Both convolutional neural networks are trained on simulated data, are model agnostic, and allow autonomous, real-time evaluation of imaging FCS measurements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.