Abstract

This study aimed to explore the value of ultrasound (US) images in chronic kidney disease (CKD) screening by constructing a CKD screening model based on grey-scale US images. According to the CKD diagnostic criteria, 1049 patients from Tongde Hospital of Zhejiang Province were retrospectively enrolled in the study. A total of 4365 renal US images were collected from these patients. Convolutional neural networks were used for feature extractions and a screening model was constructed by fusing ResNet34 and texture features to identify CKD and its stage. A comparative analysis was performed to compare the diagnosis results of the model with physicians. When diagnosing CKD or non-CKD, the receiver operating characteristic curve (AUC) of our model was 0.918 and that of the senior physician group was 0.869 (p < .05). For the diagnosis of CKD stage, the AUC of our model for CKD G1-G3 was 0.781, 0.880, and 0.905, respectively, while the AUC of the senior physician group for CKD G1-G3 was 0.506, 0.586, and 0.796, respectively; all differences were statistically significant (p < .05). The diagnostic efficiency of our model for CKD G4 and G5 reached the level of the senior physicians group. Specifically, the AUC of our model for CKD G4-G5 was 0.867 and 0.931, respectively, while the AUC of the senior physician group for CKD G4-G5 was 0.838 and 0.963, respectively (all p > .05). Our deep learning radiomics model is more effective than senior physicians in the diagnosis of early CKD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.