Abstract

Background/Objective: Automatic apnea/hypopnea events classification, crucial for clinical applications, often faces challenges, particularly in hypopnea detection. This study aimed to evaluate the efficiency of a combined approach using nasal respiration flow (RF), peripheral oxygen saturation (SpO2), and ECG signals during polysomnography (PSG) for improved sleep apnea/hypopnea detection and obstructive sleep apnea (OSA) severity screening. MethodsAn Xception network was trained using main features from RF, SpO2, and ECG signals obtained during PSG. In addition, we incorporated demographic data for enhanced performance. The detection of apnea/hypopnea events was based on RF and SpO2 feature sets, while the screening and severity categorization of OSA utilized predicted apnea/hypopnea events in conjunction with demographic data. ResultsUsing RF and SpO2 feature sets, our model achieved an accuracy of 94 % in detecting apnea/hypopnea events. For OSA screening, an exceptional accuracy of 99 % and an AUC of 0.99 were achieved. OSA severity categorization yielded an accuracy of 93 % and an AUC of 0.91, with no misclassification between normal and mild OSA versus moderate and severe OSA. However, classification errors predominantly arose in cases with hypopnea-prevalent participants. ConclusionsThe proposed method offers a robust automatic detection system for apnea/hypopnea events, requiring fewer sensors than traditional PSG, and demonstrates exceptional performance. Additionally, the classification algorithms for OSA screening and severity categorization exhibit significant discriminatory capacity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call