Abstract

AbstractAdvances in neural networks and deep learning have opened a new era in medical imaging technology, health care data analysis and clinical diagnosis. This paper focuses on the classification of MRI for diagnosis of early and progressive dementia using transfer learning architectures that employ Convolutional Neural Networks-CNNs, as a base model, and fully connected layers of Softmax functions or Support Vector Machines-SVMs. The diagnostic process is based on the analysis of the neurodegenerative changes in the brain using segmented images of brain asymmetry, which has been identified as a predictive imaging source of early dementia. Results from 300 independent simulation runs on a set of four binary and one multiclass MRI classification tasks illustrate that transfer learning of CNN-based models equipped with SVM output layer is capable to produce better performing models within a few training epochs compared to commonly used transfer learning architectures that combine CNN pretrained models with fully connected Softmax layers. However, experimental findings also confirm that longer training sessions appear to compensate for the shortcomings of the fully connected Softmax layers in the long term. Diagnosis of early dementia on unseen patients’ brain asymmetry MRI data reached an average accuracy of 90.25% with both transfer learning architectures, while progressive dementia was promptly diagnosed with an accuracy that reached 95.90% using a transfer learning architecture that has the SVM layer.KeywordsConvolutional neural networkSupport vector machinesBrain asymmetryNeurodegenerative diseasesTransfer learningDementia

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call