Abstract
Plant-parasitic nematodes cause various diseases that can be fatal to the infected plants. It causes losses to the agricultural industry, such as crop failure and poor crop quality. Developing an accurate nematode classification system is vital for pest identification and control. Deep learning classification techniques can help speed up Nematode identification as it can perform tasks directly from images. In the present study, four state-of-the-art deep learning models (ResNet101v2, CoAtNet-0, Effi- cientNetV2B0, and EfficientNetV2M) were evaluated in plant-parasitic nematode classification from microscopic image. The models were trained using a combination of three different optimizers (Adam, SGD, dan RMSProp) and several data augmentation with image transformations, such as image flip, blurring, noise addition, brightness, and contrast adjustment. The performance of the trained models was varied. Regarding test accuracy, EfficientNetV2B0 and EfficientNetV2M using RMSProp and brightness augmentation give the best result of 97.94% However, the overall performance of EfficientNetV2M was superior, with 98.66% mean class accuracy, 97.99%F1 score, 98.26% average precision, and 97.94% average recall.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.