Abstract

Nematodes represent very abundant and the largest species diversity in the world. Nematodes, which live in a soil environment, possess several functions in agricultural systems. There are two huge groups of soil nematodes, a non-parasitic nematode, which contributes positively to ecological processes, and a plant-parasitic nematode, which cause various disease and reduces yield losses in the agricultural system. Early detection and classification in the agricultural area infected with plant-parasitic nematode and interpreting the soil level condition in this area required a fast and reliable detection system. However, nematode identification is challenging and time-consuming due to their similar morphology. This study applied a pre-trained faster region-based convolutional neural network (RCNN) for plant-parasitic and non-parasitic nematodes detection. These deep learning-based object detection models gave satisfactory results as the accuracy reached 87.5%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.