Abstract
BackgroundCardiac exercise stress testing (EST) offers a non-invasive way in the management of patients with suspected coronary artery disease (CAD). However, up to 30% EST results are either inconclusive or non-diagnostic, which results in significant resource wastage. Our aim was to build machine learning (ML) based models, using patients demographic (age, sex) and pre-test clinical information (reason for performing test, medications, blood pressure, heart rate, and resting electrocardiogram), capable of predicting EST results beforehand including those with inconclusive or non-diagnostic results. MethodsA total of 30,710 patients (mean age 54.0 years, 69% male) were included in the study with 25% randomly sampled in the test set, and the remaining samples were split into a train and validation set with a ratio of 9:1. We constructed different ML models from pre-test variables and compared their discriminant power using the area under the receiver operating characteristic curve (AUC). ResultsA network of Oblivious Decision Trees provided the best discriminant power (AUC=0.83, sensitivity=69%, specificity=0.78%) for predicting inconclusive EST results. A total of 2010 inconclusive ESTs were correctly identified in the testing set. ConclusionsOur ML model, developed using demographic and pre-test clinical information, can accurately predict EST results and could be used to identify patients with inconclusive or non-diagnostic results beforehand. Our system could thus be used as a personalised decision support tool by clinicians for optimizing the diagnostic test selection strategy for CAD patients and to reduce healthcare expenditure by reducing nondiagnostic or inconclusive ESTs.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have