Abstract
Lithium-ion batteries have been widely used in many fields due to their high energy density, long cycle life and low self-discharge rate. However, most existing SOH estimation methods require a lengthy amount of time to determine features, the acquisition of multi-dimensional raw data is challenging, and the application scenarios are limited, making SOH estimation algorithms less practical in developing battery management systems (BMS). To face the challenge, this paper develops a new battery SOH estimation method and investigates the transferability of machine learning models under multiple operating conditions using transfer learning. First, features are extracted from the 15 s relaxation voltage using tsfresh, a Python package for time series feature extraction. Subsequently, four statistical features were obtained using a feature selection method based on the Pearson correlation coefficient. Then, a Bidirectional Long Short-Term Memory (Bi-LSTM) model is established and hyperparameters are adjusted using Bayesian optimization. The root mean square error (RMSE) and the mean absolute percentage error (MAPE) of battery SOH estimation on battery data set are 1.210 % and 1.225 %, respectively. Finally, based on transfer learning, the Bi-LSTM model is applied to battery datasets under multiple operating conditions, reducing the model's dependence on original training data while ensuring model accuracy. Considering the easy accessibility of short-term relaxation battery data, the battery SOH estimation method proposed in this paper is expected to facilitate the estimation of battery SOH under various operating conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.