Abstract
Abstract The identification of atmospheric rivers (ARs) is crucial for weather and climate predictions as they are often associated with severe storm systems and extreme precipitation, which can cause large impacts on society. This study presents a deep learning model, termed ARDetect, for image segmentation of ARs using ERA5 data from 1960 to 2020 with labels obtained from the TempestExtremes tracking algorithm. ARDetect is a convolutional neural network (CNN)-based U-Net model, with its structure having been optimized using automatic hyperparameter tuning. Inputs to ARDetect were selected to be the integrated water vapor transport (IVT) and total column water (TCW) fields, as well as the AR mask from TempestExtremes from the previous time step to the one being considered. ARDetect achieved a mean intersection-over-union (mIoU) rate of 89.04% for ARs, indicating its high accuracy in identifying these weather patterns and a superior performance than most deep learning–based models for AR detection. In addition, ARDetect can be executed faster than the TempestExtremes method (seconds vs minutes) for the same period. This provides a significant benefit for online AR detection, especially for high-resolution global models. An ensemble of 10 models, each trained on the same dataset but having different starting weights, was used to further improve on the performance produced by ARDetect, thus demonstrating the importance of model diversity in improving performance. ARDetect provides an effective and fast deep learning–based model for researchers and weather forecasters to better detect and understand ARs, which have significant impacts on weather-related events such as floods and droughts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.