Abstract

Grazing-incidence small-angle scattering (GISAS) is a technique of significant importance for the investigation of thin multilayered films containing nano-sized objects. It provides morphology information averaged over the sample area. However, this averaging together with multiple reflections and the well-known phase problem make the data analysis challenging and time consuming. In the present paper we show that densely connected neural networks (DenseNets) can be applied for GISAS data analysis and deliver fast and plausible results. The extraction of the rotational distributions of hexagonal nanoparticle arrangements is taken as a case study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.