Abstract

Vision-based techniques are widely used in micro aerial vehicle autonomous landing systems. Existing vision-based autonomous landing schemes tend to detect specific landing landmarks by identifying their straightforward visual features such as shapes and colors. Though efficient to compute, these schemes only apply to landmarks with limited variability and require strict environmental conditions such as consistent lighting. To overcome these limitations, we propose an end-to-end landmark detection system based on a deep convolutional neural network, which not only easily scales up to a larger number of various landmarks but also exhibit robustness to different lighting conditions. Furthermore, we propose a separative implementation strategy which conducts convolutional neural network training and detection on different hardware platforms separately, i.e. a graphics processing unit work station and a micro aerial vehicle on-board system, subject to their specific implementation requirements. To evaluate the performance of our framework, we test it on synthesized scenarios and real-world videos captured by a quadrotor on-board camera. Experimental results validate that the proposed vision-based autonomous landing system is robust to landmark variability in different backgrounds and lighting situations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.