Abstract

AbstractInverse problems are important in quantum mechanics and involve such questions as finding which potential give a certain spectrum or which arrangement of atoms give certain properties to a molecule or solid. Inverse problems are typically very hard to solve and tend to be very compute intense. We here show that neural networks can easily solve inverse problems in quantum mechanics. It is known that a neural network can compute the spectrum of a given potential, a result which we reproduce. We find that the (much harder) inverse problem of computing the correct potential that gives a prescribed spectrum is equally easy for a neural network. We extend previous work where neural networks were used to find the electronic many‐particle density given a potential by considering the inverse problem. That is, we show that neural networks can compute the potential that gives a prescribed many‐electron density.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.