Abstract
Forensic age estimation from orthopantomograms (OPGs) can be performed more quickly and accurately using convolutional neural networks (CNNs), making them an ideal extension to standard forensic age estimation methods. This study evaluates improvements in forensic age prediction for children, adolescents, and young adults by training a custom CNN from a previous study, using a larger, diverse dataset with a focus on dental growth features. 21,814 OPGs from 13,766 individuals aged 1 to under 25 years were utilized. The custom CNN underwent 1000 epochs of training and validation using 16,000 and 4000 OPGs, respectively. The best model was chosen by the least mean absolute error (MAE) and evaluated with an additional test dataset of 1814 independent OPGs. Furthermore, the CNN was applied to OPGs from 15 available forensic age estimations conducted by experts certified by the Study Group on Forensic Age Diagnostics (AGFAD), and the results were compared. A MAE of 0.93 ± 0.81 years and a mean-signed error (MSE) of -0.06 ± 1.23 years were achieved in the test dataset. 63% of predictions were accurate within 1 year, and 95% within 2.5 years. Results of the CNN were comparable to those obtained by experts, effectively highlighting discrepancies in the reported ages of individuals. Using a large and diverse dataset along with custom deep learning techniques, forensic age estimation can be significantly improved, often providing predictions accurate to within 1 year. This approach offers a reliable, robust, and objective complement to standard forensic age estimation methods. Question The potential of custom convolutional neural networks for forensic age estimation, along with a large, diverse dataset, warrants further investigation, offering valuable support to experts. Findings For 1814 test-orthopantomograms, 63% of predictions were accurate within 1 year and 95% within 2.5 years, similar to expert estimates in 15 forensic cases. Clinical relevance Many individuals' fates depend on accurate age estimation. Forensic age estimation can benefit from applying CNN-based methods to further enhance reliability and accuracy.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have