Abstract

To determine the feasibility of using a deep learning (DL) algorithm to assess the quality of focused assessment with sonography in trauma (FAST) exams. Our dataset consists of 441 FAST exams, classified as good-quality or poor-quality, with 3161 videos. We first used convolutional neural networks (CNNs), pretrained on the Imagenet dataset and fine-tuned on the FAST dataset. Second, we trained a CNN autoencoder to compress FAST images, with a 20-1 compression ratio. The compressed codes were input to a two-layer classifier network. To train the networks, each video was labeled with the quality of the exam, and the frames were labeled with the quality of the video. For inference, a video was classified as poor-quality if half the frames were classified as poor-quality by the network, and an exam was classified as poor-quality if half the videos were classified as poor-quality. The results with the encoder-classifier networks were much better than the transfer learning results with CNNs. This was primarily because the Imagenet dataset is not a good match for the ultrasound quality assessment problem. The DL models produced video sensitivities and specificities of 99% and 98% on held-out test sets. Using an autoencoder to compress FAST images is a very effective way to obtain features that can be used to predict exam quality. These features are more suitable than those obtained from CNNs pretrained on Imagenet.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.