Abstract

AbstractReal‐time imaging has potential to greatly increase the effectiveness of proton beam therapy in cancer treatment. One promising method of real‐time imaging is the use of a Compton camera to detect prompt gamma rays, which are emitted by the beam, in order to reconstruct their origin. However, because of limitations in the Compton camera's ability to detect prompt gammas, the data are often ambiguous, making reconstructions based on them unusable for practical purposes. Deep learning's ability to detect subtleties in data that traditional models do not use make it one possible candidate for the improvement of classification of Compton camera data. We show that a suitably designed neural network can reduce false detections and misorderings of interactions, thereby improving reconstruction quality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.