Abstract
Alzheimer's disease (AD) is a pressing concern in neurodegenerative research. To address the challenges in AD drug development, especially those targeting Aβ, this study uses deep learning and a pharmacological approach to elucidate the potential of pyrroloquinoline quinone (PQQ) as a neuroprotective agent for AD. Using deep learning for a comprehensive molecular dataset, blood-brain barrier (BBB) permeability is predicted and the anti-inflammatory and antioxidative properties of compounds are evaluated. PQQ, identified in the Mediterranean-DASH intervention for a diet that delays neurodegeneration, shows notable BBB permeability and low toxicity. In vivo tests conducted on an Aβ₁₋₄₂-induced AD mouse model verify the effectiveness of PQQ in reducing cognitive deficits. PQQ modulates genes vital for synapse and anti-neuronal death, reduces reactive oxygen species production, and influences the SIRT1 and CREB pathways, suggesting key molecular mechanisms underlying its neuroprotective effects. This study can serve as a basis for future studies on integrating deep learning with pharmacological research and drug discovery.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have