Abstract

Goal: Systemic sclerosis (SSc) is a rare autoimmune, systemic disease with prominent fibrosis of skin and internal organs. Early diagnosis of the disease is crucial for designing effective therapy and management plans. Machine learning algorithms, especially deep learning, have been found to be greatly useful in biology, medicine, healthcare, and biomedical applications, in the areas of medical image processing and speech recognition. However, the need for a large training data set and the requirement for a graphics processing unit (GPU) have hindered the wide application of machine learning algorithms as a diagnostic tool in resource-constrained environments (e.g., clinics). Methods: In this paper, we propose a novel mobile deep learning network for the characterization of SSc skin. The proposed network architecture consists of the UNet, a dense connectivity convolutional neural network (CNN) with added classifier layers that when combined with limited training data, yields better image segmentation and more accurate classification, and a mobile training module. In addition, to improve the computational efficiency and diagnostic accuracy, the highly efficient training model called “MobileNetV2,” which is designed for mobile and embedded applications, was used to train the network. Results: The proposed network was implemented using a standard laptop (2.5 GHz Intel Core i7). After fine tuning, our results showed the proposed network reached 100% accuracy on the training image set, 96.8% accuracy on the validation image set, and 95.2% on the testing image set. The training time was less than 5 hours. We also analyzed the same normal vs SSc skin image sets using the CNN using the same laptop. The CNN reached 100% accuracy on the training image set, 87.7% accuracy on the validation image set, and 82.9% on the testing image set. Additionally, it took more than 14 hours to train the CNN architecture. We also utilized the MobileNetV2 model to analyze an additional dataset of images and classified them as normal, early (mid and moderate) SSc or late (severe) SSc skin images. The network reached 100% accuracy on the training image set, 97.2% on the validation set, and 94.8% on the testing image set. Using the same normal, early and late phase SSc skin images, the CNN reached 100% accuracy on the training image set, 87.7% accuracy on the validation image set, and 82.9% on the testing image set. These results indicated that the MobileNetV2 architecture is more accurate and efficient compared to the CNN to classify normal, early and late phase SSc skin images. Conclusions: Our preliminary study, intended to show the efficacy of the proposed network architecture, holds promise in the characterization of SSc. We believe that the proposed network architecture could easily be implemented in a clinical setting, providing a simple, inexpensive, and accurate screening tool for SSc.

Highlights

  • Systemic sclerosis (SSc) is an autoimmune disease characterized by wide-spread fibrosis of the skin and internal organs

  • These results indicated that the MobileNetV2 architecture is more accurate and efficient compared to the convolutional neural network (CNN) to classify normal, early and late phase SSc skin images

  • Impact Statement—The network architecture is capable of discriminating normal skin images from SSc skin images using a laptop with a central processing unit (CPU)

Read more

Summary

Introduction

Systemic sclerosis (SSc) is an autoimmune disease characterized by wide-spread fibrosis of the skin and internal organs. Based on the extent of skin involvement, the disease can be classified into two types: limited cutaneous SSc (LcSSc) and diffuse cutaneous SSc (DcSSc). Both subsets can include internal organ involvement, with more severe organ involvement occurring more frequently in DcSSc [1]. Feasible method to determine skin thickness is the modified Rodnan skin thickness score (mRSS). In this assessment, the physician measures the skin thickness by manually palpating the skin at 17 sites on the patient’s body and uses a 0–3 scale to indicate the thickness [6].

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call