Abstract
There are several attempts to model rainfall time series which have been explored by members of the hydrological research communities. Rainfall, being one of the defining factors for a flooding event, is rarely modeled singularly in deep learning, as it is usually performed in multivariate analysis. This study will attempt to explore a time series modeling method in four subcatchments located in Samar, Philippines. In this study, the rainfall time series was treated as a signal and was reconstructed into a combination of a ‘smoothened’ or ‘denoised’ signal, and a ‘detailed’ or noise signal. The discrete wavelet transform (DWT) method was used as a reconstruction technique, in combination with the univariate long short-term memory (LSTM) network method. The combination of the two methods showed consistently high values of performance indicators, such as Nash–Sutcliffe efficiency (NSE), correlation coefficient (CC), Kling–Gupta efficiency (KGE), index of agreement (IA), and Legates–McCabe index (LMI), with mean average percentage error (MAPE) values at almost zero, and consistently low values for both residual mean square error (RMSE) and RMSE-observations standard deviation ratio (RSR). The authors believe that the proposed method can give efficient, time-bound results to flood-prone countries such as the Philippines, where hydrological data are deficient.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have