Abstract

In general multiple medical devices orthogonal frequency-division multiplexing (OFDM) communication systems, all the interfering medical users are legitimate but will cause disturbance to the desired user. In this work, we evaluate three deep learning (DL) algorithms: fully connected deep neural networks, convolutional neural networks, and long short-term memory neural networks for signal processing and detection in uncoded multiple medical devices OFDM communications systems. The bit error rates (BER) of these DL methods are compared with the conventional linear minimum mean squared error (LMMSE) detector. Additionally, the relationships between the BER and signal-to-interference ratio, signal-to-noise ratio, the number of interferences, and modulation type are investigated. Numerical results show that DL methods outperform LMMSE under different multiple medical device interference situations and are robust when the wireless channel has high variability. Also, DL methods are proven to have strong anti-interference ability and are useful in multiple medical devices OFDM systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.