Abstract

The trade-off between high-quality images and cellular health in optical bioimaging is a crucial problem. We demonstrated a deep-learning-based power-enhancement (PE) model in a harmonic generation microscope (HGM), including second harmonic generation (SHG) and third harmonic generation (THG). Our model can predict high-power HGM images from low-power images, greatly reducing the risk of phototoxicity and photodamage. Furthermore, the PE model trained only on normal skin data can also be used to predict abnormal skin data, enabling the dermatopathologist to successfully identify and label cancer cells. The PE model shows potential for in-vivo and ex-vivo HGM imaging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.