Abstract
Deep learning (DL) is a subset of artificial intelligence based on deep neural networks. It has made remarkable breakthroughs in medical imaging, particularly for image classification and pattern recognition. In ophthalmology, there are rising interests in applying DL methods to analyze optical coherence tomography (OCT) and optical coherence tomography angiography (OCTA) images. Studies showed that OCT and OCTA image evaluation by DL algorithms achieved good performance for disease detection, prognosis prediction, and image quality control, suggesting that the incorporation of DL technology could potentially enhance the accuracy of disease evaluation and the efficiency of clinical workflow. However, substantial issues, such as small training sample size, data preprocessing standardization, model robustness, results explanation, and performance cross-validation, are yet to be tackled before deploying these DL models in real-time clinics. This review summarized recent studies on DL-based image analysis models for OCT and OCTA images and discussed the potential challenges of clinical deployment and future research directions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Asia-Pacific journal of ophthalmology (Philadelphia, Pa.)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.