Abstract
Automatic modulation classification (AMC), which plays a significant role in wireless communication, can recognize the modulation type of the received signal without large amounts of transmitted data and parameter information. Supported by deep learning, which is a powerful tool for functional expression and feature extraction, the development of AMC can be greatly promoted. In this paper, we propose a deep learning-based modulation classification method with 2D time-frequency signal representation. In our proposed method, signals which have been received are first analyzed by time-frequency based on continuous wavelet transform (CWT). Then, CWT images of received signals are obtained and input to the deep learning model for classifying. We create a new CWT image dataset including 12 modulation types of signals under various signal-to-noise ratio (SNR) environment to verify the effectiveness of the proposed method. The experimental results demonstrate that our proposed method can reach to a high classification accuracy over the SNR of −11 dB.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have