Abstract

Human–Robot Collaboration is a critical component of Industry 4.0, contributing to a transition towards more flexible production systems that are quickly adjustable to changing production requirements. This paper aims to increase the natural collaboration level of a robotic engine assembly station by proposing a cognitive system powered by computer vision and deep learning to interpret implicit communication cues of the operator. The proposed system, which is based on a residual convolutional neural network with 34 layers and a long-short term memory recurrent neural network (ResNet-34 + LSTM), obtains assembly context through action recognition of the tasks performed by the operator. The assembly context was then integrated in a collaborative assembly plan capable of autonomously commanding the robot tasks. The proposed model showed a great performance, achieving an accuracy of 96.65% and a temporal mean intersection over union (mIoU) of 94.11% for the action recognition of the considered assembly. Moreover, a task-oriented evaluation showed that the proposed cognitive system was able to leverage the performed human action recognition to command the adequate robot actions with near-perfect accuracy. As such, the proposed system was considered as successful at increasing the natural collaboration level of the considered assembly station.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.