Abstract
Osteoporosis is a common problem in orthopedic medicine, and it has become an important medical issue in orthopedics as Taiwan is gradually becoming an aging society. In the diagnosis of osteoporosis, the bone mineral density (BMD) derived from dual-energy X-ray absorptiometry (DXA) is the main criterion for orthopedic diagnosis of osteoporosis, but due to the high cost of this equipment and the lower penetration rate of the equipment compared to the X-ray images, the problem of osteoporosis has not been effectively solved for many people who suffer from osteoporosis. At present, in clinical diagnosis, doctors are not yet able to accurately interpret X-ray images for osteoporosis manually and must rely on the data obtained from DXA. In recent years, with the continuous development of artificial intelligence, especially in the fields of machine learning and deep learning, significant progress has been made in image recognition. Therefore, it is worthwhile to revisit the question of whether it is possible to use a convolutional neural network model to read a hip X-ray image and then predict the patient’s BMD. In this study, we proposed a hip X-ray image segmentation model and a hip X-ray image recognition classification model. First, we used the U-Net model as a framework to segment the femoral neck, greater trochanter, Ward’s triangle, and the total hip in the hip X-ray images. We then performed image matting and data augmentation. Finally, we constructed a predictive model for osteoporosis using deep learning algorithms. In the segmentation experiments, we used intersection over union (IoU) as the evaluation metric for image segmentation, and both the U-Net model and the U-Net++ model achieved segmentation results greater than or equal to 0.5. In the classification experiments, using the T-score as the classification basis, the total hip using the DenseNet121 model has the highest accuracy of 74%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.