Abstract

PurposeThe aim of this study is to develop a deep neural network to diagnosis Alzheimer's disease and categorize the stages of the disease using FDG-PET scans. Fluorodeoxyglucose positron emission tomography (FDG-PET) is a highly effective diagnostic tool that accurately detects glucose metabolism in the brain of AD patients. Material and methodsIn this work, we have developed a deep neural network using FDG-PET to discriminate Alzheimer's disease subjects from stable mild cognitive impairment (sMCI), progressive mild cognitive impairment (pMCI), and cognitively normal (CN) cohorts. A total of 83 FDG-PET scans are collected from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database, including 21 subjects with CN, 21 subjects with sMCI, 21 subjects with pMCI, and 20 subjects with AD. ResultsThe method has achieved remarkable accuracy rates of 99.31% for CN vs. AD, 99.88% for CN vs. MCI, 99.54% for AD vs. MCI, and 96.81% for pMCI vs. sMCI. Based on the experimental results. ConclusionThe results show that the proposed method has a significant generalisation ability as well as good performance in predicting the conversion of MCI to AD even in the absence of direct information. FDG-PET is a well-known biomarker for the identification of Alzheimer's disease using transfer learning.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call