Abstract
The industrial Internet connects equipment to the network and utilizes the data generated to assist businesses. Industrial big data is the result of data accumulation; thus, the industrial Internet has to adopt new technologies—namely, software-defined industrial networks (SDIN) —to keep up with these developments. This study suggests a deep differential privacy data protection algorithm based on SDIN. The deep learning model is analyzed and integrated with differential privacy to provide the process framework for the deep differential privacy data protection algorithm. The equivalent model of the generative adversarial network is used to allow the attacker to obtain the optimal fake samples. The balance between dataset availability and privacy protection is achieved by implementing parameter tuning on the deep differential privacy model. The experimental results show that the proposed algorithm has strong industrial data privacy protection and high data availability and can effectively guarantee the privacy security of industrial data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.