Abstract
Abstract In the context of the metaverse, user data privacy protection has become an important issue. In this paper, firstly, a user data privacy leakage risk assessment scheme is designed by attribute sensitivity calculation, attribute similarity calculation, and attribute association calculation. Then a data privacy protection algorithm based on differential privacy is proposed, and the differential privacy data protection algorithm and implementation mechanism are described. Finally, the performance of the differential privacy protection algorithm is evaluated by analyzing the learning performance and protection performance of the algorithm. The results show that the learning performance of the differential privacy protection model decreases with increasing τ when q = 0 The larger q is, the better the protection performance of the model is, and the optimal τ value also shows a trend to the right. This study provides an effective method for user data privacy protection under the metaverse and offers new ideas for research in related fields.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.