Abstract

This paper addresses the challenge of integrating priority passage for emergency vehicles with optimal intersection control in modern urban traffic. It proposes an innovative strategy based on deep learning to enable emergency vehicles to pass through intersections efficiently and safely. The research aims to develop a deep learning model that utilizes intersection violation monitoring cameras to identify emergency vehicles in real time. This system adjusts traffic signals to ensure the rapid passage of emergency vehicles while simultaneously optimizing the overall efficiency of the traffic system. In this study, OpenCV is used in combination with Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN) to jointly complete complex image processing and analysis tasks, to realize the purpose of fast travel of emergency vehicles. At the end of this study, the principle of the You Only Look Once (YOLO) algorithm can be used to design a website and a mobile phone application (app) to enable private vehicles with emergency needs to realize emergency passage through the application, which is also of great significance to improve the overall level of urban traffic management, reduce traffic congestion and promote the development of related technologies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.