Abstract
Sinkholes can cause significant damage to infrastructures, agriculture, and endanger lives in active karst regions like the Dead Sea’s eastern shore at Ghor Al-Haditha. The common sinkhole mapping methods often require costly high-resolution data and manual, time-consuming expert analysis. This study introduces an efficient deep learning model designed to improve sinkhole mapping using accessible satellite imagery, which could enhance management practices related to sinkholes and other geohazards in evaporite karst regions. The developed AI system is centered around the U-Net architecture. The model was initially trained on a high-resolution drone dataset (0.1 m GSD, phase I), covering 250 sinkhole instances. Subsequently, it was additionally fine-tuned on a larger dataset from a Pleiades Neo satellite image (0.3 m GSD, phase II) with 1038 instances. The training process involved an automated image-processing workflow and strategic layer freezing and unfreezing to adapt the model to different input scales and resolutions. We show the usefulness of initial layer features learned on drone data, for the coarser, more readily-available satellite inputs. The validation revealed high detection accuracy for sinkholes, with phase I achieving a recall of 96.79% and an F1 score of 97.08%, and phase II reaching a recall of 92.06% and an F1 score of 91.23%. These results confirm the model’s accuracy and its capability to maintain high performance across varying resolutions. Our findings highlight the potential of using RGB visual bands for sinkhole detection across different karst environments. This approach provides a scalable, cost-effective solution for continuous mapping, monitoring, and risk mitigation related to sinkhole hazards. The developed system is not limited only to sinkholes however, and can be naturally extended to other geohazards as well. Moreover, since it currently uses U-Net as a backbone, the system can be extended to incorporate super-resolution techniques, leveraging U-Net based latent diffusion models to address the smaller-scale, ambiguous geo-structures that are often found in geoscientific data.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have