Abstract

Triple negative breast cancer (TNBC) is the most aggressive subtype of breast cancer in women. It has the poorest prognosis along with limited therapeutic options. Smart nano-based carriers are emerging as promising approaches in treating TNBC due to their favourable characteristics such as specifically delivering different cargos to cancer cells. However, nanoparticles' tumour cell uptake, and subsequent drug release, are essential factors considered during the drug development process. Contemporary qualitative analyses based on imaging are cumbersome and prone to human biases. Deep learning-based algorithms have been well-established in various healthcare settings with promising scope in drug discovery and development. In this study, the performance of five different convolutional neural network models was evaluated. In this research, we investigated two sequential models from scratch and three pre-trained models, VGG16, ResNet50, and Inception V3. These models were trained using confocal images of nanoparticle-treated cells loaded with a fluorescent anticancer agent. Comparative and cross-validation analyses were further conducted across all models to obtain more meaningful results. Our models showed high accuracy in predicting either high or low drug uptake and release into TNBC cells, indicating great translational potential into practice to aid in determining cellular uptake at the early stages of drug development in any area of research.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.