Abstract

An electro-encephalography (EEG) brain-computer interface (BCI) can provide the brain and external environment with separate information sharing and control networks. EEG impulses, though, come from many electrodes, which produce different characteristics, and how the electrodes and features to enhance classification efficiency have been chosen has become an urgent concern. This paper explores the deep convolutional neural network architecture (CNN) hyper-parameters with separating temporal and spatial filters without any pre-processing or artificial extraction processes. It selects the raw EEG signal of electrode pairs over the cortical area as hybrid samples. Our proposed deep-learning model outperforms other neural network models previously applied to this dataset in training time (∼40%) and accuracy (∼6%). Besides, considerations such as optimum order for EEG channels do not limit our model, and it is patient-invariant. The impact of network architecture on decoder output and training time is further discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.