Abstract

Hybrid analog/digital multiple input multiple output (MIMO) system is proposed to mitigate the challenges of millimeter wave (mmWave) communication. This architecture enables utilizing the large array gain with reasonable power consumption. However, new methods are required for the channel estimation problem of hybrid architecture-based systems due to the fewer number of radio frequency (RF) chains than antenna elements. Leveraging the sparse nature of the mmWave channels, compressed sensing (CS)-based channel estimation methods are proposed. Recently, machine learning (ML)-aided methods have been investigated to improve the channel estimation performance. Additionally, the Doppler effect should be considered for the high mobility scenarios, and we deal with the time-varying channel model. Therefore, in this article, we consider the scenario of time-varying channels for a multi-user mmWave hybrid MIMO system. By proposing a Deep Neural Network (DNN) and defining the inputs and outputs, we introduce a novel algorithm called Deep Learning Assisted Angle Estimation (DLA-AE) for improving the estimation of the Angles of Departure/Arrival (AoDs/AoAs) of the channel paths. In addition, we suggest Linear Phase Interpolation (LPI) to acquire the path gains for the data transmission instants. Simulation results show that utilizing the proposed DLA-AE and LPI methods enhance the time-varying channel estimation accuracy with low computational complexity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.