Abstract

Abstract The luxury car market has demanding product development standards aimed at providing state-of-the-art features in the automotive domain. Handling performance is amongst the most important properties that must be assessed when developing a new car model. In this work, we analyse the problem of predicting subjective evaluations of automobiles handling performances from objective records of driving sessions. A record is a multi-dimensional time series describing the temporal evolution of the mechanical state of an automobile. A categorical variable quantifies the evaluations of handling properties. We describe an original deep learning system, featuring a denoising autoencoder and hierarchical attention mechanisms, that we designed to solve this task. Attention mechanisms intrinsically compute probability distributions over their inputs’ components. Combining this feature with the saliency maps technique, our system can compute heatmaps that provide a visual aid to identify the physical events conditioning its predictions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.