Abstract
With information technology pushing the development of intelligent teaching environments, the online teaching platform emerges timely around the globe, and how to accurately evaluate the effect of the “any-time and anywhere” teacher–student interaction and learning has become one of the hotspots of today’s education research. Bullet chatting in online courses is one of the most important ways of interaction between teachers and students. The feedback from the students can help teachers improve their teaching methods, adjust teaching content, and schedule in time so as to improve the quality of their teaching. How to automatically identify the sentiment polarity in the comment text through deep machine learning has also become a key issue to be automatically processed in online course teaching. The traditional single-layer attention mechanism only enhances certain sentimentally intense words, so we proposed a sentiment analysis method based on a hierarchical attention mechanism that we called HAN. Firstly, we use CNN and LSTM to extract local and global information, gate mechanisms are used for extracting sentiment words, and the hierarchical attention mechanism is then used to weigh the different sentiment features, with the original information added to the attention mechanism concentration to prevent the loss of information. Experiments are conducted on China Universities MOOC and Tencent Classroom comment data sets; both accuracy and F1 are improved compared to the baseline, and the validity of the model is verified.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.