Abstract

Wildland fires are one of the most dangerous natural risks, causing significant economic damage and loss of lives worldwide. Every year, millions of hectares are lost, and experts warn that the frequency and severity of wildfires will increase in the coming years due to climate change. To mitigate these hazards, numerous deep learning models were developed to detect and map wildland fires, estimate their severity, and predict their spread. In this paper, we provide a comprehensive review of recent deep learning techniques for detecting, mapping, and predicting wildland fires using satellite remote sensing data. We begin by introducing remote sensing satellite systems and their use in wildfire monitoring. Next, we review the deep learning methods employed for these tasks, including fire detection and mapping, severity estimation, and spread prediction. We further present the popular datasets used in these studies. Finally, we address the challenges faced by these models to accurately predict wildfire behaviors, and suggest future directions for developing reliable and robust wildland fire models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.