Abstract
Software Defined Networking (SDN) has recently emerged to become one of the promising solutions for the future Internet. With the logical centralization of controllers and a global network overview, SDN brings us a chance to strengthen our network security. However, SDN also brings us a dangerous increase in potential threats. In this paper, we apply a deep learning approach for flow-based anomaly detection in an SDN environment. We build a Deep Neural Network (DNN) model for an intrusion detection system and train the model with the NSL-KDD Dataset. In this work, we just use six basic features (that can be easily obtained in an SDN environment) taken from the forty-one features of NSL-KDD Dataset. Through experiments, we confirm that the deep learning approach shows strong potential to be used for flow-based anomaly detection in SDN environments.
Accepted Version (
Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have