Abstract

In industrial manufacturing processes, detection of defects on the surfaces of metal plates supplied from iron and steel main industry manufacturers to be processed by machining and non-machining methods has an important place in estimating the values of the relevant plate such as safety and maintenance cost. With the developing technology and computer vision and deep learning applications finding a place in the industry, it has become possible to detect and classify metal plate surface defects more quickly and effectively with a lower error rate at an advanced technological level. Within the scope of this study, a deep learning model was created by using the TensorFlow library in the Python environment with using NEU Metal Surface Defects Dataset to detect metal plate surface defects. Then as an industrial application, a device prototype developed using Nvidia Jetson Nano and USB Camera, in order to test this model under real conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.