Abstract

Sleep specialists often conduct manual sleep stage scoring by visually inspecting the patient's neurophysiological signals collected at sleep labs. This is a difficult, tedious and a time-consuming task. The limitations of manual sleep stage scor- ing have escalated the demand for developing Automatic Sleep Stage Classification (ASSC) systems. Sleep stage classification refers to identifying the various stages of sleep and is a critical step in an effort to assist physicians in the diag- nosis and treatment of related sleep disorders. In this paper, we propose a novel method and a practical approach to predicting early onsets of sleep syndromes utilizing the Twin Convolutional Model FTC2, including restless leg syndrome, insomnia, based on an algorithm which is comprised of two modules. A Fast Fourier Transform is applied to 30 seconds long epochs of EEG recordings to provide localized time-frequency information, and a deep convolutional LSTM neural network is trained for sleep stage classification. Automating sleep stages detection from EEG data offers a great potential to tackling sleep irregularities on a daily basis. Thereby, a novel approach for sleep stage classification is pro- posed which combines the best of signal processing and statistics. In this study, we used the PhysioNet Sleep European Data Format (EDF) Database. The code evaluation showed impressive results, reaching accuracy of 90.43, precision of 77.76, recall of 93,32, F1-score of 89.12 with the final mean false error loss 0.09. All the source code is availlable at https://github.com/timothy102/eeg.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.