Abstract

Perovskites have been recognized as affordable substitutes for noble-metal catalysts for their tunable catalytic activity and thermal stability. Nevertheless, the highly demanding synthesis procedure still hinders the application of perovskites in catalytic combustion. In this work, a series of nanostructured SiTiO3 perovskites with B-site partial substitution by Co, Fe, Mn, Ni, and Cu are synthesized via flame spray pyrolysis in one step. The comprehensive characterizations on textural properties of nanostructured perovskites reveal that the flame-made perovskite nanoparticles all exhibit high crystal purity and large specific surface area (∼40 m2/g). Furthermore, the highest catalytic activity is achieved by SrTi0.5Co0.5O3 due to the formation of favorable oxygen vacancies, outstanding reducibility, and oxygen desorption capability. Additionally, the presence of 10 vol % water vapor during long-term testing indicates remarkable durability and water resistance. Finally, the CO oxidation and CH4 dehydrogenation on SrTiO3 incorporating Co atoms are more thermodynamically and kinetically favorable than those on other doped surfaces.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call