Abstract

We study the deep inelastic scattering (DIS) of a proton-targeted lepton in the presence of gluon condensation using gauge/gravity duality. We use a modified background where the modification parameter c corresponds to the gluon condensation in the boundary theory. First, by examining the electromagnetic field, we establish that a non-zero c can increase field magnitude. Our aim is to obtain the acceptable value of c for this scattering. Our method is based on setting the mass of the proton as an eigenvalue of the baryonic state equations of the DIS to find the acceptable value of the parameter c on the other side of the equations. Therefore, in the second step, we calculate wave function equations for the baryonic states where the mass of the proton target requires a value contribution of c as . Proceeding with the electromagnetic field and baryonic states, we derive the holographic interaction action related to the amplitude of the scattering. Finally, we compute the corresponding structure functions numerically as functions of x and q, which are Björken variables and the lepton momentum transfers, respectively. Comparing the Jlab Hall C data with our theoretical calculations, our results are acceptable.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call