Abstract

We perform an exploratory study of the role of coherent, medium-induced energy loss in azimuthal angular correlations in dihadron production in Deep Inelastic Scattering (DIS) at small x where the target proton/nucleus is modeled as a Color Glass Condensate. In this approach coherent radiative energy loss is part of the higher order corrections to the leading order dihadron production cross section. We include the effects of both gluon saturation and coherent radiative energy loss and show that radiative cold-matter energy loss has a significant effect on the so-called coincidence probability for the back to back production of dihadrons in DIS. We also define a double ratio of coincidence probabilities for a nucleus and proton targets and show that it is very robust against higher order radiative corrections.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.