Abstract
Data for face analysis often exhibit highly-skewed class distribution, i.e., most data belong to a few majority classes, while the minority classes only contain a scarce amount of instances. To mitigate this issue, contemporary deep learning methods typically follow classic strategies such as class re-sampling or cost-sensitive training. In this paper, we conduct extensive and systematic experiments to validate the effectiveness of these classic schemes for representation learning on class-imbalanced data. We further demonstrate that more discriminative deep representation can be learned by enforcing a deep network to maintain inter-cluster margins both within and between classes. This tight constraint effectively reduces the class imbalance inherent in the local data neighborhood, thus carving much more balanced class boundaries locally. We show that it is easy to deploy angular margins between the cluster distributions on a hypersphere manifold. Such learned Cluster-based Large Margin Local Embedding (CLMLE), when combined with a simple k-nearest cluster algorithm, shows significant improvements in accuracy over existing methods on both face recognition and face attribute prediction tasks that exhibit imbalanced class distribution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Pattern Analysis and Machine Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.