Abstract
The classification in class imbalanced data has drawn significant interest in medical application. Most existing methods are prone to categorize the samples into the majority class, resulting in bias, in particular the insufficient identification of minority class. A kind of novel approach, class weights random forest is introduced to address the problem, by assigning individual weights for each class instead of a single weight. The validation test on UCI data sets demonstrates that for imbalanced medical data, the proposed method enhanced the overall performance of the classifier while producing high accuracy in identifying both majority and minority class.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.