Abstract

Low efficiency of turbines used in geothermal power production, along with large power demand for geothermal fluid pumping, limits use of geothermal resources for power production in the Canadian low to mid enthalpy basins. Much larger areas of Canadian sedimentary basins have potential for geothermal direct heating, but use will be dependent on the amortization period of the installation cost as well as the parasitic power demand to maintain large flow rates in injection and production wells. Maximum exergy (kJ/kg) potential for the most perspective geothermal resources in the deeper parts of Canadian basins (150 kJ/kg (0.15 MJ/kg)), are compared to exergy contained by the intrinsic chemical energy in oil, gas and coal (30–35 MJ/kg) that is required to be replaced in order to reduce carbon emissions. The calculated number of geothermal producing doublet well systems, at very high assumed flows of 0.08 m3/s (80 L/s), required to replace an average oil producing well in Alberta –WCSB will be > 10. But, such high exergy is available only in the deepest northern parts of the WCSB.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.