Abstract
Passage retrieval is an important stage of question answering systems. Closed domain passage retrieval, e.g. biomedical passage retrieval presents additional challenges such as specialized terminology, more complex and elaborated queries, scarcity in the amount of available data, among others. However, closed domains also offer some advantages such as the availability of specialized structured information sources, e.g. ontologies and thesauri, that could be used to improve retrieval performance. This paper presents a novel approach for biomedical passage retrieval which is able to combine different information sources using a similarity matrix fusion strategy based on convolutional neural network architecture. The method was evaluated over the standard BioASQ dataset, a dataset specialized on biomedical question answering. The results show that the method is an effective strategy for biomedical passage retrieval able to outperform other state-of-the-art methods in this domain.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have