Abstract

Filtered back projection (FBP) is a classic analytical algorithm for computed tomography (CT) reconstruction, with high computational efficiency. However, images reconstructed by FBP often suffer from excessive noise and artifacts. The original FBP algorithm uses a window function to smooth signals and a linear interpolation to estimate projection values at un-sampled locations. In this study, we propose a novel framework named DeepFBP in which an optimized filter and an optimized nonlinear interpolation operator are learned with neural networks. Specifically, the learned filter can be considered as the product of an optimized window function and the ramp filter, and the learned interpolation can be considered as an optimized way to utilize projection information of nearby locations through nonlinear combination. The proposed method remains the high computational efficiency of the original FBP and achieves much better reconstruction quality at different noise levels. It also outperforms the TV-based statistical iterative algorithm, with computational time being reduced in an order of two, and state-of-the-art post-processing deep learning methods that have deeper and more complicated network structures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.