Abstract

In this study, hybrid machine learning nonlinear models were developed to predict the viscosity of DESs by combining the group contribution (GC) concept with the multilayer perceptron, a well-known feedforward artificial neural network, and the Least Squares Support Vector Machine (LSSVM) algorithm. Deep Eutectic Solvents (DESs) have come to the forefront in recent years as appealing substitutes for conventional solvents. It is imperative to have a thorough grasp of the essential properties of DESs to expand the employment of these compounds in new procedures. Most frequently, one of the crucial physical properties of a DES that must be precisely determined is its viscosity. To develop the models, a dataset of 2533 viscosity data points for 305 DESs at various temperatures (from 277.15 to 373.15 K) was gathered to build the models. By using temperature, molar ratios, and functional groups as inputs, the results indicate that the suggested models can determine the viscosity of DESs with high accuracy. The models yield average absolute relative deviations below 10% and squared correlation coefficients higher than 0.98.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.